Banach fixed-point theorem in semilinear controllability problems – a survey

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

A New Strong Convergence Theorem for Equilibrium Problems and Fixed Point Problems in Banach Spaces

We introduce a new iterative sequence for finding a common element of the set of fixed points of a relatively nonexpansive mapping and the set of solutions of an equilibrium problem in a Banach space. Then, we study the strong convergence of the sequences. With an appropriate setting, we obtain the corresponding results due to Takahashi-Takahashi and Takahashi-Zembayashi. Some of our results ar...

متن کامل

A RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES

We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].

متن کامل

a strong convergence theorem for solutions of zero point problems and fixed point problems

zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎a strong convergence theorem for the common solutions of the problems is established in the framework of hilbert spaces‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Polish Academy of Sciences Technical Sciences

سال: 2016

ISSN: 2300-1917

DOI: 10.1515/bpasts-2016-0004